NAME:

SECTION:

(1) True/False Questions: (1 point each).

T F f(x) is O(1) means that f(x) is a constant function.

T F If f(x) is $\Omega(g(x))$ then there exist unique constants C and k such that |g(x)| < C|f(x)| for all x > k.

T F For any positive integers A, b and m, $(a \mod m) + (b \mod m) = (a + b \mod m)$

T F It is not possible to find functions f(x) and g(x) such that f(x) is O(g(x)) and g(x) is O(f(x)).

T F If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then the function $f_1(x)f_2(x)$ is $O(max(g_1(x),g_2(x)))$.

T F If $a \neq 0$ and $ab \equiv ac \pmod{m}$ then $b \equiv c \pmod{m}$.

T F Given that lcm(a,b) = 14 and $a \times b = 42$ then necessarily gcd(a,b) = 3.

T F Consider the following two linear congruential generators, both of the form $x_{n+1} = ax_n + b(modm)$.

(I) $a = 7, b = 4, x_0 = 3$ and m = 9

(II) $a = 7, b = 3, x_0 = 3$ and m = 9The first generator is better.

 ${\bf T}~{\bf F}~{\bf The}~{\rm integer}~111222333444$ is divisible by 3 and 6 but not divisible by 9.

T F The complexity of the linear search algorithm is O(n).

- (2) (3 pts.) Show by using mathematical induction that for every nonnegative integer n, the integer $n^5 n$ is divisible by 5.
- $\mathbf{2}$

(3) (3 pts.) Write the bubble sort algorithm and show the steps needed to sort the sequence 5,7,2.

```
(4) (3 pts.) Given is the following procedure written in pseudo-code:
procedure lst(input: a1,...,an: integers)
L:=1
M:=a1
for i=2 to n
    if (ai > m) then
        begin
        m:=ai
        L:=i
    end
    else
    if (ai = m) then
        L:=i
    {output: M and L}
```

Provide the output of this function when the input sequence 4, 4, 2, 3, 2, 4, 3, 1 is entered, and state what the code does in general.

(5) (3 pts.) Use the Euclidean Algorithm to find gcd(50, 14) and then represent it in the form as + bt.

4

```
(6) Given is the following procedure written in pseudo-code:
procedure locc(input: a1,...,an: integers)
m:= a1
for i=2 to n
    if (ai < m) then m:=ai
    l:=0
    for i=2 to n
        if (ai = m) then l:=i
        {output: 1}
    (a) (2 pts.)Provide the output of this function when the input sequence
```

4, 4, 2, 3, 2, 4 is entered, and state what the code does in general.

(b) (2 pts.)Calculate the number of comparisons if the above code as a function of the the input size n.

- (7) (3 pts.) Show that a composite integer n must have a prime divisor less than or equal to \sqrt{n} .
- 6

(8) (3 pts.) Solve the congruence equation $15x \equiv 7 \pmod{11}$

(9) (4 pts.) Find a function g(n) so that $4n^2 - 5$ is $\Theta(g(n))$. Make sure you include the necessary witnesses.